Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Expert Rev Vaccines ; 21(11): 1603-1620, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2254449

ABSTRACT

INTRODUCTION: Several vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been developed since the inception of the coronavirus disease 2019 (COVID-19) in December 2019, at unprecedented speed. However, these rapidly developed vaccines raised many questions related to the efficacy and safety of vaccines in different communities across the globe. Various hypotheses regarding COVID-19 and its vaccines were generated, and many of them have also been answered with scientific evidence. Still, there are many myths/misinformation related to COVID-19 and its vaccines, which create hesitancy for COVID-19 vaccination, and must be addressed critically to achieve success in the battle against the pandemic. AREA COVERED: The development of anti-SARS-CoV-2 vaccines against COVID-19, their safety and efficacy, and myths/misinformation relating to COVID-19 and vaccines are presented. EXPERT OPINION: In this pandemic, we have seen a global collaborative effort of researchers, governments, and industry, supported by billions of dollars in funding, have allowed the development of vaccines far more quickly than in the past. Vaccines go through rigorous testing, analysis, and evaluations in clinical settings prior to their approval, even if they are approved for emergency use. Despite the myths, vaccination represents an important strategy to get back to normality.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , COVID-19 Vaccines , SARS-CoV-2 , Pandemics/prevention & control , Vaccination
2.
Immunotherapy ; 14(11): 833-838, 2022 08.
Article in English | MEDLINE | ID: covidwho-1952099

ABSTRACT

Tweetable abstract In this commentary, the authors have focused on the mutational impact of the Omicron variant on the current therapeutics to manage #COVID19.


Subject(s)
COVID-19 , COVID-19/epidemiology , Disease Outbreaks , Humans , Mutation/genetics , SARS-CoV-2
4.
Immunotherapy ; 14(5): 351-371, 2022 04.
Article in English | MEDLINE | ID: covidwho-1707968

ABSTRACT

The COVID-19 pandemic is a lethal virus outbreak by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which has severely affected human lives and the global economy. The most vital part of the research and development of therapeutic agents is to design drug products to manage COVID-19 efficiently. Numerous attempts have been in place to determine the optimal drug dose and combination of drugs to treat the disease on a global scale. This article documents the information available on SARS-CoV-2 and its life cycle, which will aid in the development of the potential treatment options. A consolidated summary of several natural and repurposed drugs to manage COVID-19 is depicted with summary of current vaccine development. People with high age, comorbity and concomitant illnesses such as overweight, metabolic disorders, pulmonary disease, coronary heart disease, renal failure, fatty liver and neoplastic disorders are more prone to create serious COVID-19 and its consequences. This article also presents an overview of post-COVID-19 complications in patients.


Severe acute respiratory syndrome coronavirus-2 causes the coronavirus disease i.e., COVID-19. This article encompasses basic information about coronavirus and COVID-19. It includes information about viral transmission and subsequent events for COVID-19 in a person, and it presents different drugs and vaccines utilized for the management of COVID-19. Several natural drugs are proposed to manage COVID-19. It also has an overview about post-COVID-19 complications in recovered patients.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Vaccines/immunology , COVID-19/therapy , SARS-CoV-2/physiology , Severe Acute Respiratory Syndrome/therapy , Animals , COVID-19/transmission , Drug Development , Drug Repositioning , Humans , Pandemics , Vaccine Development
5.
Curr Pharm Des ; 26(41): 5300-5309, 2020.
Article in English | MEDLINE | ID: covidwho-1073205

ABSTRACT

BACKGROUND: Previously human society has faced various unprecedented pandemics in the history and viruses have majorly held the responsibilities of those outbreaks. Furthermore, due to amplified global connection and speedy modernization, epidemic outbreaks caused by novel and re-emerging viruses signify potential risk to community health. Despite great advancements in immunization and drug discovery processes, various viruses still lack prophylactic vaccines and efficient antiviral therapies. Although, vaccine is a prophylaxes option, but it cannot be applied to infected patients, hence therapeutic interventions are urgently needed to control the ongoing global SARS- CoV-2 pandemic condition. To spot the novel antiviral therapy is of decisive importance and Mother Nature is an excellent source for such discoveries. METHODOLOGY: In this article, prompt high through-put virtual screening for vetting the best possible drug candidates from natural compounds' databases has been implemented. Herein, time tested rigorous multi-layered drug screening process to narrow down 66,969 natural compounds for the identification of potential lead(s) is implemented. Druggability parameters, different docking approaches and neutralization tendency of the natural products were employed in this study to screen the best possible natural compounds from the digital libraries. CONCLUSION: The results of this study conclude that compounds PALA and HMCA are potential inhibitors of SARS-CoV-2 spike protein and can be further explored for experimental validation. Overall, the methodological approach reported in this article can be suitably used to find the potential drug candidates against SARS-CoV2 in the burning situation of COVID-19 with less expenditure and a concise span of time.


Subject(s)
Antiviral Agents , COVID-19 , Antiviral Agents/pharmacology , Humans , Molecular Docking Simulation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
6.
ACS Sens ; 6(4): 1430-1445, 2021 04 23.
Article in English | MEDLINE | ID: covidwho-1065799

ABSTRACT

The emergence of the new coronavirus 2019 (COVID-19) was first seen in December 2019, which has spread rapidly and become a global pandemic. The number of cases of COVID-19 and its associated mortality have raised serious concerns worldwide. Early diagnosis of viral infection undoubtedly allows rapid intervention, disease management, and substantial control of the rapid spread of the disease. Currently, the standard approach for COVID-19 diagnosis globally is the RT-qPCR test; however, the limited access to kits and associated reagents, the need for specialized lab equipment, and the need for highly skilled personnel has led to a detection slowdown. Recently, the development of clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostic systems has reshaped molecular diagnosis. The benefits of the CRISPR system such as speed, precision, specificity, strength, efficiency, and versatility have inspired researchers to develop CRISPR-based diagnostic and therapeutic methods. With the global COVID-19 outbreak, different groups have begun to design and develop diagnostic and therapeutic programs based on the efficient CRISPR system. CRISPR-based COVID-19 diagnostic systems have advantages such as a high detection speed (i.e., 30 min from raw sample to reach a result), high sensitivity and precision, portability, and no need for specialized laboratory equipment. Here, we review contemporary studies on the detection of COVID-19 based on the CRISPR system.


Subject(s)
COVID-19 , Clustered Regularly Interspaced Short Palindromic Repeats , COVID-19 Testing , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Humans , SARS-CoV-2
7.
Life Sci ; 268: 118959, 2021 Mar 01.
Article in English | MEDLINE | ID: covidwho-988728

ABSTRACT

Cystic fibrosis (CF) is an autosomal recessive disease which involves the mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CF involves in the inflammatory processes and is considered as a multisystem disorder that is not confined to lungs, but it also affects other vital organs that leads to numerous co-morbidities. The respiratory disorder in the CF results in mortality and morbidity which is characterized by series of serious events involving mucus hypersecretion, microbial infections, airways obstruction, inflammation, destruction of epithelium, tissue remodeling and terminal lung diseases. Mucins are the high molecular weight glycoproteins important for the viscoelastic properties of the mucus, play a significant role in the disease mechanisms. Determining the functional association between the CFTR and mucins might help to identify the putative target for specific therapeutic approach. In fact, furin enzyme which helps in the entry of novel COVID-19 virus into the cell, is upregulated in CF and this can also serve as a potential target for CF treatment. Moreover, the use of nano-formulations for CF treatment is an area of research being widely studied as they have also demonstrated promising outcomes. The in-depth knowledge of non-coding RNAs like miRNAs and lncRNAs and their functional association with CFTR gene expression and mutation can provide a different range of opportunity to identify the promising therapeutic approaches for CF.


Subject(s)
COVID-19/virology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/physiopathology , Animals , Cystic Fibrosis/genetics , Cystic Fibrosis/therapy , Gene Expression Regulation , Humans , MicroRNAs/genetics , Mucins/metabolism , Mutation , RNA, Long Noncoding/genetics , SARS-CoV-2/pathogenicity
8.
Molecules ; 25(24)2020 Dec 13.
Article in English | MEDLINE | ID: covidwho-971013

ABSTRACT

COVID-19 is known as one of the deadliest pandemics of the century. The rapid spread of this deadly virus at incredible speed has stunned the planet and poses a challenge to global scientific and medical communities. Patients with COVID-19 are at an increased risk of co-morbidities associated with liver dysfunction and injury. Moreover, hepatotoxicity induced by antiviral therapy is gaining importance and is an area of great concern. Currently, alternatives therapies are being sought to mitigate hepatic damage, and there has been growing interest in the research on bioactive phytochemical agents (nutraceuticals) due to their versatility in health benefits reported in various epidemiological studies. Therefore, this review provides information and summarizes the juncture of antiviral, immunomodulatory, and hepatoprotective nutraceuticals that can be useful during the management of COVID-19.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , COVID-19 , Chemical and Drug Induced Liver Injury , Dietary Supplements , Pandemics , SARS-CoV-2 , Antiviral Agents/adverse effects , Antiviral Agents/therapeutic use , COVID-19/epidemiology , Chemical and Drug Induced Liver Injury/diet therapy , Chemical and Drug Induced Liver Injury/epidemiology , Humans
9.
Future Drug Discov ; 2(4): FDD50, 2020 Oct 01.
Article in English | MEDLINE | ID: covidwho-955248
10.
Bioconjug Chem ; 31(9): 2021-2045, 2020 09 16.
Article in English | MEDLINE | ID: covidwho-851204

ABSTRACT

The coronavirus disease 2019 (COVID-19) has dramatically challenged the healthcare system of almost all countries. The authorities are struggling to minimize the mortality along with ameliorating the economic downturn. Unfortunately, until now, there has been no promising medicine or vaccine available. Herein, we deliver perspectives of nanotechnology for increasing the specificity and sensitivity of current interventional platforms toward the urgent need of quickly deployable solutions. This review summarizes the recent involvement of nanotechnology from the development of a biosensor to fabrication of a multifunctional nanohybrid system for respiratory and deadly viruses, along with the recent interventions and current understanding about severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).


Subject(s)
Coronavirus Infections/diagnosis , Coronavirus Infections/therapy , Nanotechnology/trends , Pneumonia, Viral/diagnosis , Pneumonia, Viral/therapy , Biosensing Techniques , COVID-19 , Coronavirus Infections/drug therapy , Humans , Pandemics , COVID-19 Drug Treatment
11.
Expert Rev Anti Infect Ther ; 19(2): 137-145, 2021 02.
Article in English | MEDLINE | ID: covidwho-780230

ABSTRACT

INTRODUCTION: The novel coronavirus (CoV) disease 2019 (COVID-19) is a viral infection that causes severe acute respiratory syndrome (SARS). It is believed that early reports of COVID-19 cases were noticed in December 2019 and soon after it became a global public health emergency. It is advised that COVID-19 transmits through human to human contact and in most cases, it remains asymptomatic. Several approaches are being utilized to control the outbreak of this fatal viral disease. microRNAs (miRNAs) are known signature therapeutic tool for the viral diseases; they are small non-coding RNAs that target the mRNAs to inhibit their post-transcriptional expression, therefore, impeding their functions, can serve as watchdogs or micromanagers in the cells. AREAS COVERED: This review work delineated COVID-19 and its association with SARS and Middle East respiratory syndrome (MERS), the possible role of miRNAs in the pathogenesis of COVID-19, and therapeutic potential of miRNAs and their effective delivery to treat COVID-19. EXPERT OPINION: This review highlighted the importance of various miRNAs and their potential role in fighting with this pandemic as therapeutic molecules utilizing nanotechnology.


Subject(s)
COVID-19 , MicroRNAs , Nanomedicine , SARS-CoV-2/physiology , Betacoronavirus/physiology , COVID-19/genetics , COVID-19/physiopathology , Genome, Viral , Humans , MicroRNAs/genetics , MicroRNAs/immunology , Nanomedicine/methods , Nanomedicine/trends
12.
Int J Mol Sci ; 21(18)2020 Sep 09.
Article in English | MEDLINE | ID: covidwho-760932

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, an infection caused by the severe acute respiratory syndrome coronavirus (SARS-CoV-2), has led to more than 771,000 deaths worldwide. Tobacco smoking is a major known risk factor for severe illness and even death from many respiratory infections. The effects of smoking on COVID-19 are currently controversial. Here, we provide an overview of the current knowledge on the effects of smoking on the clinical manifestations, disease progression, inflammatory responses, immunopathogenesis, racial ethnic disparities, and incidence of COVID-19. This review also documents future directions of smoking related research in COVID-19. The current epidemiological finding suggests that active smoking is associated with an increased severity of disease and death in hospitalized COVID-19 patients. Smoking can upregulate the angiotensin-converting enzyme-2 (ACE-2) receptor utilized by SARS-CoV-2 to enter the host cell and activate a 'cytokine storm' which can lead to worsen outcomes in COVID-19 patients. This receptor can also act as a potential therapeutic target for COVID-19 and other infectious diseases. The COVID-19 pandemic sheds light on a legacy of inequalities regarding gender, racial, and ethnic health disparities associated with active smoking, thus, smoking cessation may help in improving outcomes. In addition, to flatten the COVID-19 curve, staying indoors, avoiding unnecessary social contact, and bolstering the immune defense system by maintaining a healthy diet/living are highly desirable.


Subject(s)
Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Smoking/epidemiology , COVID-19 , Humans , Pandemics
13.
Diseases ; 8(3)2020 Aug 06.
Article in English | MEDLINE | ID: covidwho-711387

ABSTRACT

The outbreak of novel coronavirus disease (2019-nCoV or COVID-19) is responsible for severe health emergency throughout the world. The attack of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is found to be responsible for COVID-19. The World Health Organization has declared the ongoing global public health emergency as a pandemic. The whole world fights against this invincible enemy in various capacities to restore economy, lifestyle, and safe life. Enormous amount of scientific research work(s), administrative strategies, and economic measurements are in place to create a successful step against COVID-19. Furthermore, differences in opinion, facts, and implementation methods laid additional layers of complexities in this battle against survival. Thus, a timely overview of the recent, important, and overall inclusive developments against this pandemic is a pressing need for better understanding and dealing with COVID-19. In this review, we have systematically summarized the epidemiological studies, clinical features, biological properties, diagnostic methods, treatment modalities, and preventive measurements related to COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL